Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.289
Filtrar
1.
Sci Rep ; 14(1): 5630, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453993

RESUMO

With the Neolithic transition, human lifestyle shifted from hunting and gathering to farming. This change altered subsistence patterns, cultural expression, and population structures as shown by the archaeological/zooarchaeological record, as well as by stable isotope and ancient DNA data. Here, we used metagenomic data to analyse if the transitions also impacted the microbiome composition in 25 Mesolithic and Neolithic hunter-gatherers and 13 Neolithic farmers from several Scandinavian Stone Age cultural contexts. Salmonella enterica, a bacterium that may have been the cause of death for the infected individuals, was found in two Neolithic samples from Battle Axe culture contexts. Several species of the bacterial genus Yersinia were found in Neolithic individuals from Funnel Beaker culture contexts as well as from later Neolithic context. Transmission of e.g. Y. enterocolitica may have been facilitated by the denser populations in agricultural contexts.


Assuntos
DNA Mitocondrial , Microbiota , Yersinia , Humanos , Agricultura , DNA Mitocondrial/genética , Europa (Continente) , História Antiga , Yersinia/classificação , Yersinia/isolamento & purificação
2.
Nat Microbiol ; 9(2): 405-420, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316932

RESUMO

Tc toxins are virulence factors of bacterial pathogens. Although their structure and intoxication mechanism are well understood, it remains elusive where this large macromolecular complex is assembled and how it is released. Here we show by an integrative multiscale imaging approach that Yersinia entomophaga Tc (YenTc) toxin components are expressed only in a subpopulation of cells that are 'primed' with several other potential virulence factors, including filaments of the protease M66/StcE. A phage-like lysis cassette is required for YenTc release; however, before resulting in complete cell lysis, the lysis cassette generates intermediate 'ghost' cells, which may serve as assembly compartments and become packed with assembled YenTc holotoxins. We hypothesize that this stepwise mechanism evolved to minimize the number of cells that need to be killed. The occurrence of similar lysis cassettes in diverse organisms indicates a conserved mechanism for Tc toxin release that may apply to other extracellular macromolecular machines.


Assuntos
Fatores de Virulência , Yersinia , Yersinia/química , Endopeptidases
3.
Virulence ; 15(1): 2316439, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38389313

RESUMO

The genus Yersinia includes human, animal, insect, and plant pathogens as well as many symbionts and harmless bacteria. Within this genus are Yersinia enterocolitica and the Yersinia pseudotuberculosis complex, with four human pathogenic species that are highly related at the genomic level including the causative agent of plague, Yersinia pestis. Extensive laboratory, field work, and clinical research have been conducted to understand the underlying pathogenesis and zoonotic transmission of these pathogens. There are presently more than 500 whole genome sequences from which an evolutionary footprint can be developed that details shared and unique virulence properties. Whereas the virulence of Y. pestis now seems in apparent homoeostasis within its flea transmission cycle, substantial evolutionary changes that affect transmission and disease severity continue to ndergo apparent selective pressure within the other Yersiniae that cause intestinal diseases. In this review, we will summarize the present understanding of the virulence and pathogenesis of Yersinia, highlighting shared mechanisms of virulence and the differences that determine the infection niche and disease severity.


Assuntos
Peste , Yersiniose , Yersinia pestis , Animais , Humanos , Yersinia/genética , Virulência/genética , Yersinia pestis/genética , Peste/microbiologia , Yersiniose/microbiologia
4.
J Exp Med ; 221(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38363547

RESUMO

Tumor necrosis factor (TNF) is a pleiotropic inflammatory cytokine that mediates antimicrobial defense and granuloma formation in response to infection by numerous pathogens. We previously reported that Yersinia pseudotuberculosis colonizes the intestinal mucosa and induces the recruitment of neutrophils and inflammatory monocytes into organized immune structures termed pyogranulomas (PG) that control Yersinia infection. Inflammatory monocytes are essential for the control and clearance of Yersinia within intestinal PG, but how monocytes mediate Yersinia restriction is poorly understood. Here, we demonstrate that TNF signaling in monocytes is required for bacterial containment following enteric Yersinia infection. We further show that monocyte-intrinsic TNFR1 signaling drives the production of monocyte-derived interleukin-1 (IL-1), which signals through IL-1 receptors on non-hematopoietic cells to enable PG-mediated control of intestinal Yersinia infection. Altogether, our work reveals a monocyte-intrinsic TNF-IL-1 collaborative inflammatory circuit that restricts intestinal Yersinia infection.


Assuntos
Yersiniose , Yersinia pseudotuberculosis , Humanos , Interleucina-1 , Yersinia , Fator de Necrose Tumoral alfa , Monócitos
5.
Nat Microbiol ; 9(2): 390-404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38238469

RESUMO

Disease-causing bacteria secrete numerous toxins to invade and subjugate their hosts. Unlike many smaller toxins, the secretion machinery of most large toxins remains enigmatic. By combining genomic editing, proteomic profiling and cryo-electron tomography of the insect pathogen Yersinia entomophaga, we demonstrate that a specialized subset of these cells produces a complex toxin cocktail, including the nearly ribosome-sized Tc toxin YenTc, which is subsequently exported by controlled cell lysis using a transcriptionally coupled, pH-dependent type 10 secretion system (T10SS). Our results dissect the Tc toxin export process by a T10SS, identifying that T10SSs operate via a previously unknown lytic mode of action and establishing them as crucial players in the size-insensitive release of cytoplasmically folded toxins. With T10SSs directly embedded in Tc toxin operons of major pathogens, we anticipate that our findings may model an important aspect of pathogenesis in bacteria with substantial impact on agriculture and healthcare.


Assuntos
Proteômica , Yersinia , Yersinia/genética , Yersinia/metabolismo
6.
J Vet Med Sci ; 86(3): 322-324, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38267043

RESUMO

This study aimed to investigate the prevalence of antibodies against pathogenic Yersinia such as Y. enterocolitica and Y. pseudotuberculosis in domestic pigs. A total of 650 serum samples from pigs in nine regions of the Chiba Prefecture in Japan, were tested using plasmid-encoded Yersinia outer membrane protein (Yops) antigen ELISA. The cutoff value was calculated using 20 pathogenic Yersinia-free pig serum samples. According to the cutoff value, 246 (37.8%) pigs from seven regions were considered seropositive for pathogenic Yersinia during the study period. These results indicate that pathogenic Yersinia is widespread in pigs in Chiba, which may become the source of human yersiniosis in this region.


Assuntos
Yersinia enterocolitica , Yersinia pseudotuberculosis , Suínos , Animais , Humanos , Yersinia , Sus scrofa , Japão/epidemiologia
7.
Mol Phylogenet Evol ; 188: 107903, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37574177

RESUMO

Yersinia spp. vary significantly in their ability to cause diseases that threaten public health. Their pathogenicity is frequently associated with increasing antimicrobial resistance (AMR) and various virulence factors. The aim of the study was to investigate the AMR genes, virulence factors, and genetic diversity of Yersinia strains isolated from meats and fish in Wenzhou in 2020 by using whole-genome sequencing (WGS). A total of 50 isolates were collected. The phylogenetic relationships among the Yersinia species were also analyzed using multilocus sequence typing (MLST), core genome multi-locus sequence typing (cgMLST), and single nucleotide polymorphism (SNP) analysis. According to the results, all the strains could be classified into five species, with most isolated from beef, followed by poultry, pork, and fish. AMR genes were identified in 23 strains. And the qnrD1 genes were all located in the Col3M plasmid. Virulence genes, such as yaxA, ystB, pla, and yplA, were also found in the 15 Y. enterocolitica strains. And this study also found the presence of icm/dot type IVB-related genes in one Yersinia massiliensis isolate. MLST analysis identified 43 sequence types (STs), 19 of which were newly detected in Yersinia. Moreover, cgMLST analysis revealed that no dense genotype clusters were formed (cgMLST 5341, 5344, 5346-5350, 5353-5390). Instead, the strains appeared to be dispersed over large distances, except when multiple isolates shared the same ST. Isolates Y4 and Y26 were closely related to strains originating from South Korea and Denmark. This study showed considerable diversity in Yersinia spp. isolated from local areas (Wenzhou City). The data generated in our study may enrich the molecular traceability database of Yersinia and provide a basis for the development of more effective antipathogen control strategies.


Assuntos
Antibacterianos , Fatores de Virulência , Animais , Bovinos , Fatores de Virulência/genética , Tipagem de Sequências Multilocus/métodos , Filogenia , Farmacorresistência Bacteriana/genética , Yersinia/genética , Variação Genética , Genoma Bacteriano
8.
Virulence ; 14(1): 2249790, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37621095

RESUMO

Translocon pores formed in the eukaryotic cell membrane by a type III secretion system facilitate the translocation of immune-modulatory effector proteins into the host cell interior. The YopB and YopD proteins produced and secreted by pathogenic Yersinia spp. harboring a virulence plasmid-encoded type III secretion system perform this pore-forming translocator function. We had previously characterized in vitro T3SS function and in vivo pathogenicity of a number of strains encoding sited-directed point mutations in yopD. This resulted in the classification of mutants into three different classes based upon the severity of the phenotypic defects. To investigate the molecular and functional basis for these defects, we explored the effectiveness of RAW 264.7 cell line to respond to infection by representative YopD mutants of all three classes. Signature cytokine profiles could separate the different YopD mutants into distinct categories. The activation and suppression of certain cytokines that function as central innate immune response modulators correlated well with the ability of mutant bacteria to alter anti-phagocytosis and programmed cell death pathways. These analyses demonstrated that sub-optimal translocon pores impact the extent and magnitude of host cell responsiveness, and this limits the capacity of pathogenic Yersinia spp. to fortify against attack by both early and late arms of the host innate immune response.


Assuntos
Yersinia pseudotuberculosis , Animais , Yersinia pseudotuberculosis/genética , Sistemas de Secreção Tipo III/genética , Imunidade Inata , Macrófagos , Yersinia
9.
mBio ; 14(5): e0131023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37615436

RESUMO

IMPORTANCE: Yersinia are responsible for significant disease burden in humans, ranging from recurrent disease outbreaks (yersiniosis) to pandemics (Yersinia pestis plague). Together with rising antibiotic resistance rates, there is a critical need to better understand Yersinia pathogenesis and host immune mechanisms, as this information will aid in developing improved immunomodulatory therapeutics. Inflammasome responses in human cells are less studied relative to murine models of infection, though recent studies have uncovered key differences in inflammasome responses between mice and humans. Here, we dissect human intestinal epithelial cell and macrophage inflammasome responses to Yersinia pseudotuberculosis. Our findings provide insight into species- and cell type-specific differences in inflammasome responses to Yersinia.


Assuntos
Peste , Yersinia pestis , Yersinia pseudotuberculosis , Humanos , Animais , Camundongos , Yersinia , Inflamassomos
10.
J Microbiol Methods ; 211: 106779, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37406739

RESUMO

This study aimed to develop multiplex real-time PCR methods using SYBR Green and TaqMan probes for rapid and sensitive diagnosis, differentiating three pathogenic Yersinia groups such as highly pathogenic Y. enterocolitica, low pathogenic Y. enterocolitica, and Y. pseudotuberculosis. Specific primer and probe combinations for differentiating three pathogenic Yersinia groups were designed from three chromosomally encoded genes (ail, fyuA, and inv). Twenty-six stains of pathogenic Yersinia species including 6 strains of low pathogenic Y. enterocolitica serotypes, 7 strains of highly pathogenic Y. enterocolitica serotypes, and 13 strains of pathogenic Y. pseudotuberculosis were used for specificity testing. Specific patterns of real-time amplification signals distinguished three pathogenic Yersinia groups. A detection limit of approximately 101 colony forming units (CFU) /reaction of genomic DNA was determined based on plate counts. Furthermore, the multiplex real-time PCR methods also detected Y. enterocolitica O:8 from the DNA extracted from spiked rabbit blood samples and potentially infected wild rodent fecal samples. These results demonstrated that the multiplex real-time PCR methods developed in this study are useful for rapid detection and differentiation of three pathogenic Yersinia groups. Therefore, these methods provide a new monitoring and detection capability to understand the epidemiology of pathogenic Yersinia and to diagnose three pathogenic Yersinia groups.


Assuntos
Yersinia enterocolitica , Infecções por Yersinia pseudotuberculosis , Yersinia pseudotuberculosis , Animais , Coelhos , Yersinia pseudotuberculosis/genética , Yersinia enterocolitica/genética , Reação em Cadeia da Polimerase em Tempo Real , Yersinia/genética
11.
Microbiol Spectr ; 11(4): e0020323, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37466430

RESUMO

Yersinia pestis is the etiological agent of plague. Marmota himalayana of the Qinghai-Tibetan plateau is the primary host of flea-borne Y. pestis. This study is the report of isolation of Mu-like bacteriophages of Y. pestis from M. himalayana. The isolation and characterization of four Mu-like phages of Y. pestis were reported, which were named as vB_YpM_3, vB_YpM_5, vB_YpM_6, and vB_YpM_23 according to their morphology. Comparative genome analysis revealed that vB_YpM_3, vB_YpM_5, vB_YpM_6, and vB_YpM_23 are phylogenetically closest to Escherichia coli phages Mu, D108 and Shigella flexneri phage SfMu. The role of LPS core structure of Y. pestis in the phages' receptor was pinpointed. All the phages exhibit "temperature dependent infection," which is independent of the growth temperature of the host bacteria and dependent of the temperature of phage infection. The phages lyse the host bacteria at 37°C, but enter the lysogenic cycle and become prophages in the chromosome of the host bacteria at 26°C. IMPORTANCE Mu-like bacteriophages of Y. pestis were isolated from M. himalayana of the Qinghai-Tibetan plateau in China. These bacteriophages have a unique temperature dependent life cycle, follow a lytic cycle at the temperature of warm-blooded mammals (37°Ð¡), and enter the lysogenic cycle at the temperature of its flea-vector (26°Ð¡). A switch from the lysogenic to the lytic cycle occurred when lysogenic bacteria were incubated from lower temperature to higher temperature (initially incubating at 26°C and shifting to 37°C). It is speculated that the temperature dependent lifestyle of bacteriophages may affect the population dynamics and pathogenicity of Y. pestis.


Assuntos
Bacteriófagos , Peste , Sifonápteros , Yersinia pestis , Animais , Yersinia , Bacteriófagos/genética , Temperatura , Peste/microbiologia , Yersinia pestis/genética , Sifonápteros/microbiologia , Receptores de Bacteriófagos , Mamíferos
12.
Appl Environ Microbiol ; 89(7): e0024023, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37338394

RESUMO

Metal ions are essential nutrients for all life forms, and restriction of metal ion availability is an effective host defense against bacterial infection. Meanwhile, bacterial pathogens have developed equally effective means to secure their metal ion supply. The enteric pathogen Yersinia pseudotuberculosis was found to uptake zinc using the T6SS4 effector YezP, which is essential for Zn2+ acquisition and bacterial survival under oxidative stress. However, the mechanism of this zinc uptake pathway has not been fully elucidated. Here, we identified the hemin uptake receptor HmuR for YezP, which can mediate import of Zn2+ into the periplasm by the YezP-Zn2+ complex and demonstrated that YezP functions extracellularly. This study also confirmed that the ZnuCB transporter is the inner membrane transporter for Zn2+ from the periplasm to cytoplasm. Overall, our results reveal the complete T6SS/YezP/HmuR/ZnuABC pathway, wherein multiple systems are coupled to support zinc uptake by Y. pseudotuberculosis under oxidative stress. IMPORTANCE Identifying the transporters involved in import of metal ions under normal physiological growth conditions in bacterial pathogens will clarify its pathogenic mechanism. Y. pseudotuberculosis YPIII, a common foodborne pathogen that infects animals and humans, uptake zinc via the T6SS4 effector YezP. However, the outer and inner transports involved in Zn2+ acquisition remain unknown. The important outcomes of this study are the identification of the hemin uptake receptor HmuR and inner membrane transporter ZnuCB that import Zn2+ into the cytoplasm via the YezP-Zn2+ complex, and elucidation of the complete Zn2+ acquisition pathway consisting of T6SS, HmuRSTUV, and ZnuABC, thereby providing a comprehensive view of T6SS-mediated ion transport and its functions.


Assuntos
Hemina , Infecções por Yersinia pseudotuberculosis , Humanos , Animais , Hemina/metabolismo , Yersinia/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Zinco/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
13.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 508-517, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204817

RESUMO

Gram-negative bacteria such as Aeromonas and Yersinia spp. have developed mechanisms to inhibit the immune defense of their host. Effector proteins are directly injected into the host cytoplasm from the bacterial cytosol via type III secretion systems (T3SSs), where they modulate the cytoskeleton and signaling of the cell. Assembly of, and secretion via, T3SSs is tightly regulated by a number of bacterial proteins, including SctX (AscX in Aeromonas), the secretion of which is essential for T3SS function. Here, crystal structures of AscX in complex with SctY chaperones from Yersinia or Photorhabdus spp. carrying homologous T3SSs are described. There are crystal pathologies in all cases, with one crystal form diffracting anisotropically and the other two exhibiting strong pseudotranslation. The new structures reveal that the positioning of the substrate is very similar on different chaperones. However, the two C-terminal SctX helices that cap the N-terminal tetratricopeptide repeat of SctY shift and tilt depending on the identity of the chaperone. Moreover, the C-terminus of the α3 helix of AscX exhibits an unprecedented kink in two of the structures. In previous structures, the C-terminus of SctX protrudes beyond the chaperone as a straight helix: a conformation that is required for binding to the nonameric export gate SctV but that is unfavorable for binary SctX-SctY complexes due to the hydrophobicity of helix α3 of SctX. A kink in helix α3 may allow the chaperone to shield the hydrophobic C-terminus of SctX in solution.


Assuntos
Proteínas de Bactérias , Chaperonas Moleculares , Ligação Proteica , Chaperonas Moleculares/química , Proteínas de Bactérias/química , Yersinia/metabolismo , Interações Hidrofóbicas e Hidrofílicas
14.
Front Cell Infect Microbiol ; 13: 1166077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228670

RESUMO

Many Gram-negative pathogens utilize the type III secretion system (T3SS) to translocate virulence-promoting effector proteins into eukaryotic host cells. The activity of this system results in a severe reduction of bacterial growth and division, summarized as secretion-associated growth inhibition (SAGI). In Yersinia enterocolitica, the T3SS and related proteins are encoded on a virulence plasmid. We identified a ParDE-like toxin-antitoxin system on this virulence plasmid in genetic proximity to yopE, encoding a T3SS effector. Effectors are strongly upregulated upon activation of the T3SS, indicating a potential role of the ParDE system in the SAGI or maintenance of the virulence plasmid. Expression of the toxin ParE in trans resulted in reduced growth and elongated bacteria, highly reminiscent of the SAGI. Nevertheless, the activity of ParDE is not causal for the SAGI. T3SS activation did not influence ParDE activity; conversely, ParDE had no impact on T3SS assembly or activity itself. However, we found that ParDE ensures the presence of the T3SS across bacterial populations by reducing the loss of the virulence plasmid, especially under conditions relevant to infection. Despite this effect, a subset of bacteria lost the virulence plasmid and regained the ability to divide under secreting conditions, facilitating the possible emergence of T3SS-negative bacteria in late acute and persistent infections.


Assuntos
Sistemas Toxina-Antitoxina , Yersinia , Yersinia/genética , Virulência/genética , Sistemas Toxina-Antitoxina/genética , Sistemas de Secreção Tipo III/metabolismo , Plasmídeos/genética , Proteínas de Bactérias/metabolismo
15.
J Biomol Struct Dyn ; 41(5): 1879-1894, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35021965

RESUMO

Some members of Yersinia (Y), a genus of bacteria in the family Yersiniaceae, are pathogenic in humans, causing a range of health problems, from gastrointestinal syndromes to the plague. The Y protein tyrosine phosphatase (PTP) YopH is a crucial virulence determinant, considering the vital roles of PTPs in the intracellular signal transduction pathways and cell cycle control. The structural understanding of YopH as a cellular target in pathogenic conditions caused by Y infection is a prerequisite for designing potent and selective YopH inhibitors. Thus, by using molecular docking simulations, the open and closed conformations of the so-called 'WPD loop' (352-Gly-Asn-Trp-Pro-Asp-Gln-Thr-Ala-Val-Ser-361), located nearby the active site (403-Cys-Arg-Ala-Gly-Val-Gly-Arg-Thr-410) in YopH structure, are shown to be relevant for recognition by carboxylic acid derivatives, and the closed conformation is a more preferable receptor in terms of the quantitative correlation with experimental data. In both cases, aurintricarboxylic acid (ATA) has the greatest affinity to YopH. Consequently, a quantum mechanics/molecular mechanics (QM/MM) molecular model is derived to see into the extent of the ATA-induced open-closed conformational change. Active site residues and the WPD loop, as well as ATA are treated using SCC-DFTB-D (QM level), while the rest of the complex is treated using AMBER force field (MM level). The active/inactive functional behavior of YopH is explored by observing the interaction mode of ATA with the wild-type (wt)/Cys403Ser receptor and evaluating the competitive inhibition parameters. Implications of the present study for experimental research are discussed. Communicated by Ramaswamy H. Sarma.


Assuntos
Proteínas da Membrana Bacteriana Externa , Ácidos Carboxílicos , Proteínas Tirosina Fosfatases , Yersinia , Proteínas da Membrana Bacteriana Externa/química , Ácidos Carboxílicos/química , Domínio Catalítico , Simulação de Acoplamento Molecular , Proteínas Tirosina Fosfatases/química , Yersinia/metabolismo
17.
Curr Opin Microbiol ; 71: 102256, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36584489

RESUMO

Cell death in response to infection is conserved across all kingdoms of life. In metazoans, cell death upon bacterial infection is primarily carried out by the cysteine and aspartate protease and receptor-interacting serine/threonine protein kinase families. The Gram-negative bacterial genus Yersinia includes pathogens that cause disease in humans and other animals ranging from plague to gastrointestinal infections. Pathogenic Yersiniae express a type-III secretion system (T3SS), which translocates effectors that disrupt phagocytosis and innate immune signaling to evade immune defenses and replicate extracellularly in infected tissues. Blockade of innate immune signaling, disruption of the actin cytoskeleton, and the membrane-disrupting activity of the T3SS translocon pore, are all sensed by innate immune cells. Here, we discuss recent advances in understanding the pathways that regulate Yersinia-induced cell death, and how manipulation of these cell death pathways over the course of infection promotes bacterial dissemination or host defense.


Assuntos
Morte Celular Regulada , Yersiniose , Humanos , Animais , Yersinia , Sistemas de Secreção Tipo III/metabolismo , Morte Celular , Transdução de Sinais , Proteínas de Bactérias
19.
J Infect Chemother ; 28(11): 1582-1583, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35934232

RESUMO

Antibody titers against the superantigen, Yersinia pseudotuberculosis-derived mitogen, suggestive of mediating Kawasaki disease-like manifestation in Y. pseudotuberculosis infections, in immunoglobulin products were evaluated. Trace, but detectable titer was demonstrated in the products. Thus, attention is required when evaluating anti-Y. pseudotuberculosis-derived mitogen IgG titers in patient sera post intravenous immunoglobulin therapy.


Assuntos
Yersiniose , Infecções por Yersinia pseudotuberculosis , Yersinia pseudotuberculosis , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Mitógenos/uso terapêutico , Yersinia , Infecções por Yersinia pseudotuberculosis/tratamento farmacológico
20.
PLoS Genet ; 18(7): e1010321, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35901167

RESUMO

The type III secretion system (T3SS) is an appendage used by many bacterial pathogens, such as pathogenic Yersinia, to subvert host defenses. However, because the T3SS is energetically costly and immunogenic, it must be tightly regulated in response to environmental cues to enable survival in the host. Here we show that expression of the Yersinia Ysc T3SS master regulator, LcrF, is orchestrated by the opposing activities of the repressive H-NS/YmoA histone-like protein complex and induction by the iron and oxygen-regulated IscR transcription factor. While deletion of iscR or ymoA has been shown to decrease and increase LcrF expression and type III secretion, respectively, the role of H-NS in this system has not been definitively established because hns is an essential gene in Yersinia. Using CRISPRi knockdown of hns, we show that hns depletion causes derepression of lcrF. Furthermore, we find that while YmoA is dispensable for H-NS binding to the lcrF promoter, YmoA binding to H-NS is important for H-NS repressive activity. We bioinformatically identified three H-NS binding regions within the lcrF promoter and demonstrate binding of H-NS to these sites in vivo using chromatin immunoprecipitation. Using promoter truncation and binding site mutation analysis, we show that two of these H-NS binding regions are important for H-NS/YmoA-mediated repression of the lcrF promoter. Surprisingly, we find that IscR is dispensable for lcrF transcription in the absence of H-NS/YmoA. Indeed, IscR-dependent regulation of LcrF and type III secretion in response to changes in oxygen, such as those Yersinia is predicted to experience during host infection, only occurs in the presence of an H-NS/YmoA complex. These data suggest that, in the presence of host tissue cues that drive sufficient IscR expression, IscR can act as a roadblock to H-NS/YmoA-dependent repression of RNA polymerase at the lcrF promoter to turn on T3SS expression.


Assuntos
Regulação Bacteriana da Expressão Gênica , Yersinia , Proteínas de Bactérias/metabolismo , Histonas/genética , Oxigênio/metabolismo , Yersinia/genética , Yersinia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...